[PMC free article] [PubMed] [Google Scholar]Hayflick L

[PMC free article] [PubMed] [Google Scholar]Hayflick L. both of which are potent inducers of cellular senescence, promote the altered nuclear staining of methylated TRF2, which is dependent upon the ATM-mediated DNA damage response. Collectively, these results suggest that the altered nuclear staining of methylated TRF2 may represent ATM-mediated nuclear structural alteration associated with cellular senescence. Our data further imply that methylated TRF2 can serve as a potential biomarker for cellular senescence. values. SUPPLEMENTAL FIGURES Click here to view.(564K, pdf) Acknowledgments We thank John R. Walker and Nicole Batenburg for their crucial feedback. This work was supported by Ontario Early Researcher Award program and grants from Canadian Institutes of Health Research to X.D.Z. T.R.H.M. was a holder of Ontario Graduate Scholarship. Footnotes The authors GSK 2334470 of this manuscript have no conflict of interest to declare. Recommendations Campisi J. Aging, cellular senescence, and malignancy. Annu Rev Physiol. 2013;75:685C705. [PMC free article] [PubMed] [Google Scholar]Rodier F, Campisi J. Four faces of cellular senescence. The Journal of cell biology. 2011;192:547C556. [PMC free article] [PubMed] [Google Scholar]Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res. 1965;37:614C636. [PubMed] [Google Scholar]Levy MZ, Allsopp RC, Futcher AB, Greider CW, Harley CB. Telomere end-replication GSK 2334470 problem and cell aging. J Mol Biol. 1992;225:951C960. [PubMed] [Google Scholar]Reaper PM, di Fagagna F, Jackson SP. Activation of the DNA damage response by telomere attrition: a passage to cellular senescence. Cell Cycle. 2004;3:543C546. [PubMed] [Google Scholar]Berezney R, Mortillaro MJ, Ma H, Wei X, Samarabandu J. The nuclear matrix: a structural milieu for genomic function. International review of cytology. 1995;162A:1C65. [PubMed] [Google Scholar]Berezney R. The nuclear matrix: a GSK 2334470 heuristic model for investigating genomic business and function in the cell nucleus. Journal of cellular biochemistry. 1991;47:109C123. [PubMed] [Google Scholar]Mehta Is usually, Figgitt M, Clements CS, Kill IR, Bridger JM. Alterations to nuclear architecture and genome behavior in senescent cells. Annals of the New York Academy of Sciences. 2007;1100:250C263. [PubMed] [Google Scholar]Dell’Orco RT, Whittle WL. Nuclear matrix composition and in vitro cellular senescence. Experimental gerontology. 1994;29:139C149. [PubMed] [Google Scholar]Okabe J, Eguchi A, Wadhwa R, Rakwal R, Tsukinoki R, Hayakawa T, Nakanishi M. Limited capacity of the nuclear matrix to bind telomere repeat binding factor TRF1 may restrict the proliferation of mortal human fibroblasts. Human molecular genetics. 2004;13:285C293. [PubMed] [Google Scholar]Raz V, Vermolen BJ, Garini Y, Onderwater JJ, Mommaas-Kienhuis MA, Koster AJ, Young IT, Tanke H, Dirks RW. The nuclear lamina promotes telomere aggregation and centromere peripheral localization during senescence of human mesenchymal stem cells. Journal of cell science. 2008;121:4018C4028. [PubMed] [Google Scholar]Scaffidi P, Misteli T. Lamin A-dependent nuclear defects in human aging. Science. 2006;312:1059C1063. [PMC free article] [PubMed] [Google Scholar]Palm W, de Lange T. How shelterin protects Mammalian telomeres. Annu Rev Genet. 2008;42:301C334. [PubMed] [Google Scholar]Liu D, O’Connor MS, Qin J, Songyang Z. Telosome, a mammalian telomere-associated complex created by multiple telomeric proteins. J Biol Chem. 2004;279:51338C51342. [PubMed] [Google Scholar]Luderus ME, van Steensel B, Chong L, Sibon OC, Cremers FF, de Lange T. Structure, subnuclear distribution, and nuclear matrix association of the mammalian telomeric complex. J Cell Biol. 1996;135:867C881. [PMC free article] [PubMed] [Google Scholar]de Lange T. Human telomeres are attached to the nuclear matrix. Embo J. 1992;11:717C724. [PMC free article] [PubMed] [Google Scholar]Kaminker PG, Kim SH, Desprez PY, Campisi J. A novel form of the telomere-associated protein TIN2 localizes to the nuclear matrix. Cell Cycle. 2009;8:931C939. [PMC free article] [PubMed] [Google Scholar]Crabbe L, Cesare AJ, Kasuboski JM, Fitzpatrick JA, Karlseder J. Human telomeres are tethered to the nuclear envelope during postmitotic nuclear assembly. Cell Rep. 2012;2:1521C1529. [PMC free article] [PubMed] [Google Scholar]Voronin AP, Lobov IB, Gilson E, Podgornaya OI. A telomere-binding protein (TRF2/MTBP) from mouse nuclear matrix with motives of an intermediate filament-type rod domain. J Anti Aging Med. 2003;6:205C218. [PubMed] [Google Scholar]Li B, Oestreich S, de Lange T. Identification of human Rap1: implications for telomere development. Cell. 2000;101:471C483. [PubMed] [Google Scholar]Ye JZ, Donigian JR, van Overbeek M, Loayza D, Luo Y, Krutchinsky AN, Chait BT, MMP26 de Lange T. TIN2 binds TRF1 and TRF2 simultaneously and stabilizes the TRF2 complex on telomeres. The Journal of biological chemistry. 2004;279:47264C47271. [PubMed] [Google Scholar]Kim SH, Beausejour C, Davalos AR, Kaminker P, Heo SJ, Campisi J. TIN2 mediates functions of TRF2 at human telomeres. The Journal of biological chemistry. 2004;279:43799C43804. [PubMed] [Google Scholar]Houghtaling BR, Cuttonaro L, Chang W, Smith S. A dynamic molecular link between the telomere length regulator TRF1 and the chromosome end protector TRF2. Curr Biol. 2004;14:1621C1631. [PubMed] [Google Scholar]Broccoli D, Smogorzewska A, Chong L, de Lange T. Human telomeres.

Comments are Disabled